PROGEN - passion for research


Functional principle of Hyperphage	Zoom

Functional principle of Hyperphage

Hyperphage M13 K07ΔpIII (1x2mL)

Provides helper phage function in packaging a common phage display phagemid. Infection of bacteria via pIII.

Discover more about the hyperphage system here.

Quantity:  2 mL (lyoph.)

Delivery Time: usually 1-7 working days

Excl. 19% Tax, excl. Shipping Cost

Call us now for more information on our products: +49 6221 8278-0

Any more questions?


Product description

Purity PEG precipitation
Packing unit 2 mL (lyoph.)



An Effective Tool for the Isolation of Recombinant Antibodies, Proteins or Peptides from Hyperphage-Packed Libraries.


A helper phage technology ("Hyperphage System") was developed by Rondot et al. (Nature Biotechnology 19:75-81, 2001). The Hyperphage System allows to improve antibody presentation in phage display by increasing the number of antibodies displayed per phage particle (up to 5 vs. 0.01) and thereby the system offers great advantage in the fields of functional gene analysis and proteomics. Panning of phages can be performed with small amounts of antigen and higher efficiency. For example, the application of universal libraries for antibody isolation can be improved by employing panning of hyperphage-packed libraries on blots of protein spots after 2-dimensional gel electrophoresis.

The Hyperphage System:

Hyperphages carry a deletion in the pIII gene. They are generated by an E. coli packaging cell line producing functional pIII which is used to package a phage genome with a pIII deletion. The resulting hyperphages carry functional pIII on their surface but lack the pIII gene in their genome. These hyperphages can then be used to infect bacteria with a phagemid library. Each of the resulting display phages carries several copies of the antibody or peptide on its surface, thus dramatically increasing panning efficiency.

For detailed information please visit Hyperphage M13 K07ΔpIII


Original papers on successful use of hyperphage

Zantow J et al. (2016). Sci. Rep. 6:34337, DOI:10.1038/srep34337

Connor DO et al. (2016). PLoS One. Feb 9;11(2):e0148986. doi: 10.1371/journal.pone.0148986 114.

Derman Y et al. (2016). Toxins 8:25

Rohrbeck A et al. (2016). Toxins 8:100

Miethe S et al. (2016). PLoS ONE 11:e0161446

Blokzijl A. et al. (2016). Mol Cell Proteomics 15:1848-1856

Kibat J et al. (2016). N. Biotech. 33:574-581

Rasetti-Escargueil C et al. (2015). mAbs 6:1161-1177

Miethe S et al. (2015). PLoS ONE 10:e0139905

Becker M et al. (2015). BMC Biotechnology 15:43

Avril A et al. (2015). BMC Biotechnology 15:86

Droste P et al. (2015).BMC Biotechnol.15:57

Zehner M et al. (2015). Immunity 42:850-863

Kügler J et al. (2015). BMC Biotechnol. 15:10

Fuchs M et al. (2014). BMC Biotechnol. 14:68

Hülseweh B et al. (2014). mAbs 6:717-726

Trott M et al. (2014). PLoS ONE 9:e97478

Miethe S et al. (2014). STO Scientific Publications, STO-MP-HFM239-16

Miethe S et al. (2014). mAbs 6:446-459

Schirrmann T et al. (2014). mAbs, J6(2)

Steinwand M et al. (2013). mAbs, 6:204-218     

Zhou M et al. (2013). Eur J immunol, 43:499-509

Meyer T et al. (2012). BMC Biotechnol, 12:29

Wezler X et al. (2012). Hum. Antibod. 21:13-28

Rülker T et al. (2012). PLoS ONE, 7(5):e37242. doi:10.1371/journal.pone.0037242

Zhang C. et al. (2012). PLoS ONE 7(1): e30684. doi:10.1371/journal.pone.0030684

Colwill K et al. (2011). Nature Meth. 8:551–558

Hust M et al. (2011). J. Biotechnol. 152:159-170

Meyer T et al. (2010). Vet. Microbiol. 147:162-169

Mersmann M et al. (2010). N. Biotec, 27:118-128

Schütte M et al. (2009). PLoS ONE 4:e6625.

Pelat T et al. (2009). BMC Biotechnol., 9:60

Naseem S et al. (2010). Veterinary Microbiology 142:285-292

Kirsch MI et al. (2008). BMC-Biotechnol. 8:66

Kügler J et al. (2008). Applied Microbiology and Biotechnology80:447- 458

Thie H et al. (2008). N Biotechnol. 5:49-54

Pelat T et al. (2007). Antimicrob agents and chemother 51:2758-2764

Soltes G et al. (2007). J Biotech 127:626-637

Hust M et al. (2006). Bio/Techniques, 41:335-342

Kirsch M et al. (2005). J immunol Meth 301:173-185

Rondot S et al. (2001). Nature Biotechnol. 19:75-78



Hust M., Frenzel, A., Tomszak, F, Kügler, J & Dübel, S. (2014) Antibody Phage Display. In: Dübel, S. & Reichert, J.M. (eds.) Handbook of Therapeutic Antibodies, 2nd ed. Wiley-VCH, Weinheim, ISBN 978-3-527-32937-3 p. 43-76

Hust, M., Frenzel, A., Schirmann, T. and Dübel, S. (2014) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol. 1101, 305-320.2

Hust, M., Frenzel, A., Meyer, T., Schirmann, T. and Dübel, S. (2012). Construction of human naive antibody gene libraries. In: Antibody Engineering: Methods and Protocols, Ed: Chames, P., Meth Mol Biol 907, 85-107

Breitling, F., Broders, O., Helmsing, S., Hust, M & Dübel, S (2010) Improving phage display throughput by using Hyperphage, miniaturised titration and pVIII (g8p) ELISA. In: Antibody Engineering (2nd ed) Springer Protocols. Vol. 1, ISBN 978-3-642-01143-6, p. 197-206

Broders, O., Breitling, F., and Dübel, S. (2003). Hyperphage - Improving Antibody Presentation in Phage Display. Methods Mol Biol 205, 295-302.


Material safety data sheet

Please complete the form below to request a material safety data sheet

Personal Info

* Required Fields

Product Request

Personal Info

* Required Fields