

Product datasheet

anti-Butyrophilin mouse monoclonal, 102.43, supernatant

Short overview

Cat. No. 651153 **Quantity** 5 ml

Product description

Host Mouse
Antibody Type Monoclonal
Isotype IgG2a kappa
Clone 102.43

Immunogen Butyrophilin purified from bovine milk fat globule membrane

Formulation Contains 0.09% sodium azide
UniprotID P18892 (Bovine),Q13410 (Human)

Synomym Butyrophilin subfamily 1 member A1, BT, BTN1A1, BTN

Conjugate Unconjugated

Purification Hybridoma cell culture supernatant

Storage Short term at 2-8°C; long term storage in aliquots at -20°C; avoid freeze/thaw cycles

Intended use Research use only

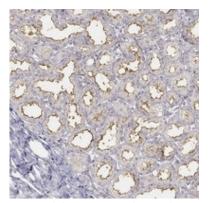
Application IHC, WB

Reactivity Bovine, Human

Applications

Immunohistochemistry (IHC) - frozenReady-to-useWestern Blot (WB)Assay dependent

Background


The mab reacts specifically with butyrophilin, a unique 67 kD polypeptide present in lactating mammary gland epithelium and in the milk fat globule membrane (MFGM). No cross-reaction with other MFGM proteins. The epitope has been localized on the N-terminal extracellular part of the protein, close to the transmembrane region. Butyrophilins have recently been described as a new family of immunoregulators, similar to the co-stimulatory and co-inhibitory family of B7 molecules (Arnett & Viney, 2014).

Polypeptide reacting: Butyrophilin, 67 kD polypeptide; present in the apical membrane of lactating mammary epithelium and in MFGM.

Reactivity on cultured cell lines: Transfected cell line BMGE with butyrophilin cDNA.

Positive control: Milk fat globule membrane (MFGM).

Product images

Butyrophilin staining on human lactating breast (courtesy of The Human Protein Atlas, www.proteinatlas.org, Thul PJ et al, 2017. A subcellular map of the human proteome. Science)

References

Publication	Species	Application
Heid, H., Zimbelmann, R., Dörflinger, Y. & Rickelt, S.	bovine	WB
Formation and degradation of lipid droplets in human		
adipocytes and the expression of aldehyde oxidase (AOX).		
Cell and Tissue Research vol. 379 45â€"62 (2020).		