Call +49 6221 8278-0

PROGEN - passion for research


IHC of human skin using anti-Perilipin 2 antibody (Cat. No. GP40) (courtesy of J.Heß, University Hospital Heidelberg) Zoom

IHC of human skin using anti-Perilipin 2 antibody (Cat. No. GP40) (courtesy of J.Heß, University Hospital Heidelberg)

anti-Perilipin 1-5 complete sample set

The anti-Perilipin 1-5 complete sample set provides antibodies directed against all 5 Perilipins to evaluate the presence and status in IHC and WB.
The set contains enough antibody to perform stainings on 6-12 sections per antibody.

highly_published external_validation
Cat. No.: 70010
Quantity:  600 µl each antibody


Cat. No. Product Name Reactivity Application
GP29S anti-Perilipin 1 (N-terminus) guinea pig polyclonal, serum, sample (ready-to-use) mouse, rat IHC, WB
GP40S anti-Perilipin 2 (N-terminus aa 1-29) guinea pig polyclonal, serum, sample (ready-to-use) human, mouse ICC/IF, IHC, WB
GP30S anti-Perilipin 3 (N-terminus) guinea pig polyclonal, serum, sample (ready-to-use) bovine, human, mouse, rat IHC, WB
GP34S anti-Perilipin 4 (C-terminus) guinea pig polyclonal, serum, sample (ready-to-use) human ICC/IF, IHC, WB
GP31S anti-Perilipin 5 (C-terminus) guinea pig polyclonal, serum, sample (ready-to-use) bovine, human, mouse, rat ICC/IF, IHC

Price as configured: €188.00

Excl. Tax, excl. Shipping Cost

Call us now for more information on our products: +49 6221 8278-0

Any more questions?


Product description

Immunogen see individual antibody datasheet for information about specific immunogens
Storage short term at 2 – 8 °C; long term storage in aliquots at - 20 °C; avoid freeze/ thaw cycles
Number of experiments 6-12 sections per antibody
Note centrifuge prior to opening
Intended use research use only
Tested species reactivity see individual antibody datasheet


Tested applications Tested dilutions
Immunocytochemistry (ICC)/ Immunofluorescence (IF) assay dependent (anti-Perilipin 1, Cat. No. GP29S and anti-Perilipin 3, Cat. No. GP30S not tested)
Immunohistochemistry (IHC) - frozen ready-to-use (anti-Perilipin 2, Cat. No. GP40S not tested)
Immunohistochemistry (IHC) - paraffin ready-to-use (anti-Perilipin 4, Cat. No. GP34S not tested)
Western Blot (WB) assay dependent



Lipid droplets (LD) are highly recognized in biomedical research and pathology. These organells are found in nearly all cell types and tissues and the composition of lipidic material varies strongly, depending on their storage or transport function. LDs are linked to several diseases like diabetes, obesity, liposarcoma, atherosclerosis, lipid droplet biogenesis, viral and bacterial infection.   

Perilipins / PAT family proteins

  • 5 subtypes: perilipin 1-5 (PLIN1- PLIN5)
  • located in the membrane of LDs
  • characterization of LD subpopulations and multifunctional properties (lipid transport, lipogenesis and lypolysis)
  • analysis of viral or bacterial infection pathways (targeting LDs)

The anti-Perilipin 1-5 complete sample set provides antibodies directed against all 5 Perilipins to evaluate the presence and status in IHC and WB.
The set contains enough antibody to perform stainings on 6-12 sections per antibody.

Set content:
Cat. No. GP29S, anti-Perilipin 1 (N-terminus) guinea pig polyclonal, serum, sample, 600 µl
Cat. No. GP40S, anti-Perilipin 2 (N-terminus aa 1-29) guinea pig polyclonal, serum, sample, 600 µl
Cat. No. GP30S, anti-Perilipin 3 (N-terminus) guinea pig polyclonal, serum, sample, 600 µl
Cat. No. GP34S, anti-Perilipin 4 (C-terminus) guinea pig polyclonal, serum, sample, 600 µl
Cat. No. GP31S, anti-Perilipin 5 (C-terminus) guinea pig polyclonal, serum, sample, 600 µl



Furukawa, S., Nagaike, M. & Ozaki, K. Databases for technical aspects of immunohistochemistry. J. Toxicol. Pathol. 30, 79–107 (2017). rat IHC (paraffin) GP29, GP40
Gemmink, A. et al. Dissociation of intramyocellular lipid storage and insulin resistance in trained athletes and type 2 diabetes patients; involvement of perilipin 5? J. Physiol. (2017). human WB GP31, GP29
Gallardo-Montejano, V. I. et al. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1a/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat. Commun. 7, (2016). mouse WB, ICC-IF, IP, PLA GP31, GP29, GP40, GP34
Barquissau, V. et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol. Metab. 5, 352–365 (2016). human WB GP31
Gemmink, A. et al. Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans. Diabetologia 59, 1040–8 (2016). human WB, IHC (frozen) GP31
Inoue, J. et al. Identification of BCL11B as a regulator of adipogenesis. Sci. Rep. 6, 32750 (2016). mouse WB GP29
Kaushik, S. & Cuervo, A. M. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12, 432–438 (2016). mouse WB, ICC-IF GP40
Trevino, M. B. et al. Perilipin 5 regulates islet lipid metabolism and insulin secretion in a cAMP-dependent manner: Implication of its role in the postprandial insulin secretion. Diabetes 64, 1299–1310 (2015). human, mouse WB, ICC-IF GP31
Pourteymour, S. et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol. Rep. 3, (2015). human IHC (paraffin) GP31, GP34
Billecke, N. et al. Perilipin 5 mediated lipid droplet remodelling revealed by coherent Raman imaging. Integr. Biol. (Camb). 7, 467–76 (2015). rat IHC (frozen) GP31
Kozusko, K. et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy Europe PMC Funders Group. Diabetes 64, 299–310 (2015). human, mouse WB GP29, GP40
Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone- mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015). mouse WB, ICC-IF GP40
Frisdal, E. et al. Adipocyte ATP-Binding Cassette G1 Promotes Triglyceride Storage, Fat Mass Growth, and Human Obesity. Diabetes 64, 840–855 (2015). mouse WB, IHC (paraffin) GP29
Ramos, S. V et al. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol. Reports 2, (2014). rat WB  GP31
Heid, H. et al. On the formation of lipid droplets in human adipocytes: the organization of the perilipin-vimentin cortex. PLoS One 9, (2014). human ICC-IF GP29, GP34
Kuramoto, K. et al. Deficiency of a Lipid Droplet Protein, Perilipin 5, Suppresses Myocardial Lipid Accumulation, Thereby Preventing Type 1 Diabetes- Induced Heart Malfunction. Mol. Cell. Biol.  34, 2721–2731 (2014). mouse WB GP31, GP40
Mason, R. R. et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol. Metab. 3, 652–663 (2014). mouse IHC (frozen) GP31
Mason, R. R., Meex, R. C. R., Russell, A. P., Canny, B. J. & Watt, M. J. Cellular Localization and Associations of the Major Lipolytic Proteins in Human Skeletal Muscle at Rest and during Exercise. PLoS One 9, (2014). human IHC (frozen) GP31
Camus, G. et al. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J. Biol. Chem. 289, 35770–80 (2014). human WB GP40
Mcdonough, P. M. et al. Differential Phosphorylation of Perilipin 1A at the Initiation of Lipolysis Revealed by Novel Monoclonal Antibodies and High Content Analysis. PLoS One 8, (2013). mouse ICC-IF GP29
Macpherson, R. E. K., Vandenboom, R., Roy, B. D. & Peters, S. J. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physioligal Reports 1, (2013). rat WB GP31
MacPherson, R. E. K., Ramos, S. V, Vandenboom, R., Roy, B. D. & Peters, S. J. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R644-50 (2013). rat WB, Co-IP GP31
Heid, H. et al. Lipid droplets, perilipins and cytokeratins--unravelled liaisons in epithelium-derived cells. PLoS One 8, (2013). human WB, ICC-IF, IP

GP31, GP30, GP34

Dahlhoff, M. et al. PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo NIH Public Access. Biochim. Biophys. Acta 1830, 4642–4649 (2013). human IHC (paraffin) GP31, GP29, GP40, GP30, GP34
Straub, B. K. et al. Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology 62, 617–631 (2013). human IHC (frozen) GP40
Fernández-Rojo, M. A. et al. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Rep. 4, 238–247 (2013). mouse WB GP40
Bosma, M. et al. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol 137, 205–216 (2012). human, rat WB, ICC-IF, IEM GP 31, GP40
Chang, P., Khatchadourian, A., Anne McKinney, R. & Maysinger, D. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation 12, (2012). mouse WB GP30
Timmers, S. et al. Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity. Proc. Natl. Acad. Sci. U. S. A. 109, 11711–11716 (2012). mouse WB GP31
Pauloin, A. & Chanat, E. Prolactin and epidermal growth factor stimulate adipophilin synthesis in HC11 mouse mammary epithelial cells via the PI3-kinase/Akt/mTOR pathway. Biochim. Biophys. Acta 1823, 987–996 (2012). mouse WB GP40
Macpherson, R. E. K. et al. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle. Am. J. Physiol. - Regul. Integr. Comp. Physiol.  (2011). rat IHC (frozen)

GP31, GP40

Wang, H. et al. Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J. Biol. Chem. 286, 15707–15715 (2011). human WB GP31
Timmers, S. et al. Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle. PLoS One 6, (2011). rat WB GP31, GP40
Stenson, B. M. et al. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis. J. Biol. Chem. 286, 370–379 (2011). human WB GP29
Lenz, L.-S. et al. Adipocyte-specific Inactivation of Acyl-CoA Synthetase Fatty Acid Transport Protein 4 (Fatp4) in Mice Causes Adipose Hypertrophy and Alterations in Metabolism of Complex Lipids under High Fat Diet. J. Biol. Chem. 286, 35578–35586 (2011). mouse IHC (paraffin) GP40
Dichlberger, A. et al. Lipid body formation during maturation of human mast cells. J. Lipid Res. 52, 2198–208 (2011). human WB, ICC-IF GP30
Straub, B. K. et al. Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Mod. Pathol. 23, 480–492 (2010). human WB, IHC GP29, GP30
Chang, B. H.-J., Li, L., Saha, P. & Chan, L. Absence of adipose differentiation related protein upregulates hepatic VLDL secretion, relieves hepatosteatosis, and improves whole body insulin resistance in leptin-deficient mice. J. Lipid Res. 51, 2132–42 (2010). mouse WB, IHC (paraffin) GP40
Buers, I. et al. TIP47, a Lipid Cargo Protein Involved in Macrophage Triglyceride Metabolism. Arterioscler. Thromb. Vasc. Biol. 29, 767–773 (2009). human WB, ICC-IF GP29, GP30
Akhtar, N. et al. Molecular dissection of integrin signalling proteins in the control of mammary epithelial development and differentiation. Development 136, 1019–27 (2009). mouse WB, IHC (paraffin) GP40
Cobbe, N. et al. The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J. Cell Sci. 122, 3414–23 (2009). human WB, ICC-IF


Bulankina, A. V et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell Biol. 185, 641–55 (2009). human WB, ICC-IF


Alsted, T. J. et al. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am. J. Physiol. - Endocrinol. Metab. 296, E445–E453 (2008). human WB GP29
Straub, B. K., Stoeffel, P., Heid, H., Zimbelmann, R. & Schirmacher, P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47, 1936–1946 (2008). human WB, IHC

GP29, GP40, GP30

Muthusamy, K., Halbert, G. & Roberts, F. Immunohistochemical staining for adipophilin, perilipin and TIP47. J. Clin. Pathol. 59, 1166–1170 (2006). human IHC (paraffin) GP29, GP30
Yamaguchi, T., Matsushita, S., Motojima, K., Hirose, F. & Osumi, T. MLDP, a novel PAT family protein localized to lipid droplets and enriched in the heart, is regulated by peroxisome proliferator-activated receptor alpha. J. Biol. Chem. 281, 14232–40 (2006). mouse WB, ICC-IF GP31, GP29, GP40
Roepstorff, C. et al. Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise. Am. J. Physiol. - Endocrinol. Metab. 291, E1106–E1114 (2006). human WB GP29
Yamaguchi, T., Omatsu, N., Omukae, A. & Osumi, T. Analysis of interaction partners for perilipin and ADRP on lipid droplets∗. Mol. Cell. Biochem. 284, 167–173 (2006). mouse ICC-IF GP29
Robenek, H. et al. Butyrophilin controls milk fat globule secretion. Proc. Natl. Acad. Sci. USA 103, 10385–10390 (2006). bovine ICC-IF, IEM GP30
Hänisch, J., Wältermann, M., Robenek, H. & Steinbüchel, A. Eukaryotic Lipid Body Proteins in Oleogenous Actinomycetes and Their Targeting to Intracellular Triacylglycerol Inclusions: Impact on Models of Lipid Body Biogenesis. Appl. Environ. mircrobiology 72, 6743–6750 (2006). human IEM GP30
Robenek, H. et al. Lipid Droplets Gain PAT Family Proteins by Interaction with Specialized Plasma Membrane Domains. J. Biol. Chem. 280, 26330–26338 (2005). human ICC-IF, IEM GP29, GP30
Robenek, H., Lorkowski, S., Schnoor, M. & Troyer, D. Spatial Integration of TIP47 and Adipophilin in Macrophage Lipid Bodies. J. Biol. Chem. 280, 5789–5794 (2005). human WB, ICC-IF, IEM GP30
Robenek, H., Robenek, M. J. & Troyer, D. PAT family proteins pervade lipid droplet cores. J. Lipid Res. 46, 1331–1338 (2005). human IEM GP30
Forcheron, F. et al. Genes of Cholesterol Metabolism in Human Atheroma: Overexpression of Perilipin and Genes Promoting Cholesterol Storage and Repression of ABCA1 Expression. Arterioscler. Thromb. Vasc. Biol. 25, 1711–1717 (2005). human, rat WB, IHC (paraffin) GP29
Ohsaki, Y., Maeda, T. & Fujimoto, T. Fixation and permeabilization protocol is critical for the immunolabeling of lipid droplet proteins. Histochem. Cell Biol. 124, 445–452 (2005). human ICC-IF GP40
Rydén, M. et al. Targets for TNF-α-induced lipolysis in human adipocytes. Biochem. Biophys. Res. Commun. 318, 168–175 (2004). human WB GP29
Fukumoto, S. & Fujimoto, T. Deformation of lipid droplets in fixed samples. Histochem. Cell Biol. 118, 423–428 (2002). human ICC-IF GP40
Heid, H. W., Moll, R., Schwetlick, I., Rackwitz, H. R. & Keenan, T. W. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res. 294, 309–21 (1998). human, mouse, rat, bovine, dog WB, IHC (frozen), ICC-IF, IEM GP40
Heid, H. W., Lzer, M. S. & Keenan, T. W. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem. J. 320, 1025–1030 (1996). bovine WB GP40

Material safety data sheet

Please complete the form below to request a material safety data sheet

Personal Info

* Required Fields

Product Request

Personal Info

* Required Fields